
Spacewire on Earth Orbiting Scatterometers 
Alex Bachmann, Minh Lang, James Lux, Richard Steffke 

Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Drive 
Pasadena, CA 9 1 109 

Bachmann@ipl.nasa.gov,Minh.Lang@jpl.nasa.gov, James.p.Lux @id.nasa.gov, Richard.Steffke@ipl.nasa.gov 
(818) 354-5087, (818) 354-1556, (818) 354-2075, (818) 354-3533 

Abstract-The need for a high speed, reliable and easy to 
implement communication link has led to the development 
of a space flight oriented version of IEEE 1355 called 
Spacewire. Spacewire is based on high-speed (200 Mbps) 
serial point-to-point links using Low Voltage Differential 
Signaling (LVDS). Spacewire has provisions for routing 
messages between a large network of processors, using 
wormhole routing for low overhead and latency. 
[Additionally, there are available space qualified hybrids, 
which provide the Link layer to the user's bus]. A test bed 
of multiple digital signal processor breadboards, 
demonstrating the ability to meet signal processing 
requirements for an orbiting scatterometer has been 
implemented using three Astrium MCM-DSPs, each 
breadboard consists of a Multi Chip Module (MCM) that 
combines a space qualified Digital Signal Processor and 
peripherals, including IEEE- 1355 links. With the addition of 
appropriate physical layer interfaces and software on the 
DSP, the Spacewire link is used to communicate between 
processors on the test bed, e.g. sending timing references, 
commands, status, and science data among the processors. 
Results are presented on development issues surrounding 
the use of Spacewire in this environment, from physical 
layer implementation (cables, connectors, LVDS drivers) to 
diagnostic tools, driver firmware, and development 
methodology. The tools, methods, and hardware, software 
challenges and preliminary performance are investigated 
and discussed. 
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1. INTRODUCTION 
The need to send data reliably and quickly from subsystem 
to subsystem on spacecraft has led to various data transfer 
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implementations. Serial methods are popular as they reduce 
the wire and pin count. 

Spacewire is a high-speed serial communication link 
standard, which set specifications for the various layers. Its 
progenitor is IEEE1355 the commercial communication 
link, which is very prolific. Spacewire adds LVDS and 
specifies different space qualified cable and connectors. We 
have developed a testbed for the next generation orbiting 
scatterometer [ 1][2] which uses the Astrium Multi Chip 
Module containing theTSC2 1020 DSP, Digital peripheral 
controller and a Spacewire (the SMCS332) asic. Rather 
than attempt to implement some other inter processor link, 
we used the IEEE-l355/SpaceWire link as the 
communication method between the DSP processors. 
Alternative technologies used in the past have strong 
heritage but technical or implementation limitations reduced 
or excluded them as an option on the testbed. 

2. SPACEWIRE STANDARD 
The main purpose of the Spacewire standard is to ensure 
compatibility between different equipment, in order to 
facilitate integration, testing, reduce time-to-market, cost 
and re-use in different missions [ 31. 

Spacewire (proposed as IEEE 1355.2) is based on the IEEE 
1355-1995 standard; it is a full-duplex, bi-directional, serial, 
point-to-point data link with a raw data rate of 200Mbit/sec. 
It encodes data using two differential signal pairs in each 
direction. A total of eight signal wires, four in each direction 
[4]. Each pair is twisted, shields of the four individual 
twisted shielded pairs are insulated from one another, and 
from the overall shield. encompassing the whole bundle. 
Connections are made with 9 pin micro D-type connectors, 
which have strong flight legacy. The signaling method is 
LVDS . 

LVDS 
Spacewire, allowing communication over distances of 10 m 
or more, uses Low Voltage Differential Signaling (LVDS). 
LVDS are current mode switched devices and require a 
good match between the characteristic impedance of the 
transfer medium (Le. 100 to 100 ohm twisted pair) and the 
shunt termination resistance at the receiver end. Given the 
low voltages involved (350mV) requires more attention be 
paid to grounding, common mode rejection ratio (cmrr) and 



EMC design. This means balanced signal skew between the 
differential signals needs to be maintained by keeping the 
line lengths of similar distance. However the “constant 
current loop” signaling also helps reduce radiated noise and 
as a side benefit allows detection of opens or shorts in the 
cable. 

Each link consists of two pairs of lines per direction for a 
total of 4 pairs or 8 individual wires. One of the differential 
pairs carries the data the other carries a strobe signal. 
XOR’d these two signals generate the clock. The strobe 
signal is dependent on the data, when the data remains 
constant from one data bit interval to the next a strobe 
transition occurs. This type of coding is called Data-Strobe 
(DS) encoding. This coding stream is diagramed below. 
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Two of the advantages to this type of coding are: 

1. Since the resulting data is clocked on both the 
positive and negative edges of the recovered clock, 
one gets twice the bit rate as versus the more 
traditional leading edge clock with synchronous 
protocol. 
And since the strobe signal gets switched only 
when the data bit was the same as the previous data 
bit, the di/dt type noise introduced into the system 
is much lower. 

2. 

Any communication technology is broken down into levels 
which are characterized per a specification. The Spacewire 
levels are described below. 

Vurious Space Wire Protocol Levels 
1 Level 0: Physical Level 
1 Level 1: Signal Level 
1 Level 2: Character Level 
1 Level 3: Exchange Level 

Level 4: Packet Level 
1 Level 5:  Transaction Level 

Physical Level-describes the physical interface between 
nodes in a link. This includes mechanical and electrical 
specifications, covering items like connectors and cabling. 

Signal Level-describes the make up of the electrical 
signals going across a link; including voltage amplitudes, 
encoding (in this case DS) see Figure 1 above, fault 
protocol, and data rates 

Character Level-describes how a basic character is defined 
using bits to build the basic unit of a character. Spacewire 
defines a control character and a data character. The control 
characters are made up of a parity bit, a data control flag (set 
to one) and a two-bit control code. These in different 
combinations indicate the following and are used to 
facilitate the exchange level. 

Flow Control (FCT) 
Normal End of Packet (EOP) 
Error End of Packet (EEP) 

1 

1 

1 Escape (ESC) 
1 Null (ESC + FCT) 

The data character contains a parity bit, the data control flag 
bit (set to zero) and eight bits of data transmitted least 
significant bit first. 

Exchange Level-describes how the data will be sent across 
the link. It contains the format or steps necessary to 
establish and maintain communication between any two 
nodes. This level contains the following elements. 

Initialization 
1 Flow Control 
1 Detection of Parity Errors 
1 Detection of Disconnect Errors 

Link Error Recovery 6@” Initialization starts by placing both nodes in kno state, 
then checking for errors and followed by the s n ing out of 
NULL’S, ending with the transmission of Data, FCT and 
Nulls as required. 

Flow control characters control the availability of each node 
in a link. They indicate whether each side of node has space 
available to accept new incoming data thus avoiding 
overflow and loss of data. They are sent every n characters 
(8 in this case). Once received they are not stored in the 
receive memory or buffer. Thus a transmitter will not send 
any characters until it has received one or more FCT’s to 
indicate that the receiver is ready. The transmitter keeps a 
credit count of the number of characters it has been 
authorized to send. Each time the receiver sends an FCT the 
transmitter increments its credit counter by 8. When it 
transmits a character it decrements its credit counter by 1. If 
the credit counter reaches zero the transmitter will stop 
sending characters until it receives another FCT. The NULL 
character is used to maintain the connectivity between two 
nodes. In order to remain connected, the nodes at both ends 
of a link must send NULL characters continuously when 
they do not have data to send. 

Detection of ParityDisconnect errors will result in the 
transmitted data to be erroneous or even missing. Therefore 
when Spacewire detects one of these it will initiate a 
response accordingly. A disconnect error is registered when 
the time interval from the last transition on either the data or 
strobe signal exceeds the disconnect-detection time. If an 
error is detected Spacewire follows the Link Error 
Recovery sequence. 



Link Error Recovery starts with one node of the link ceasing 
transmission. This will cause a disconnect at the other node. 
This node then also stops transmitting. This generates a 
disconnect error at the original node. This procedure is 
known as “exchange of silence”. Once this occurs both 
nodes cycle through the reset sequence (ErrorReset, 
Errorwait, Ready) ending up in the Ready state ready to 
begin operation. If a error continues the working node will 
attempt to establish the link by sending NULL’S. If it does 
not receive a response due to the error then the above cycle 
is repeated. 

Packet L e v e l i s  a sequence of characters in a specific order 
and format. (in this case Hdr-Data-EOPEEP) The 
Header dictates the destination of the packet. Data is the 
relevant information. Data can be any number of characters. 
And the EOPEEP indicates the end of the packet. 

Truizsaction Level-describes how a number of packets are 
assembled to perform a task or function. 

These levels define and describe the elements necessary to 
build a SpaceWire link from the lowest level to the highest. 
Other protocols can be embedded in a Spacewire packet 
such as MPEG, IP, ATM. This would be done at the 
transaction level. 

3. ASTRKJM MULTI CHIP MODULE 
The Astrium Multi Chip Module (MCMDSP) is a radiation 
tolerant hybrid that incorporates a TSC21020F Digital 
Signal Processor, the SMCS332, and a Digital Peripheral 
Controller, which allows various peripherals to be 
connected to it making it a possible contender for a turnkey 
DSP system requiring limited hardware and software design 
man-hours. Fig. 2 shows the layout of the evaluation board 
containing the hybrid chip. Some of the hybrid features are: 
I 

I 

Peripheral Controller ASIC 
IEEE 1355 (Spacewire) High Speed lSOMbit/s serial 
links 
JTAG 
User Interface UART, FIFO, I/O port 
Radiation tolerant to 5Okrads(Si) dose 
Latch up immunity better than lOOMeV 
SEU LET threshold better than 15 MeV*cm2/mg 
6 watts at 100% load 
128Kword Data Memory 
128Kword Program Memory 



The. Scalable Multi-Channel Communication Sub-system 
(SMCS) is a scalable and flexible high performance serial 
communications controller with fault tolerant features [5]. It 
was developed by and is heavily used by the European 
Aerospace community, it is incorporated into the Astrium 
MCMDSP hybrid and its features are listed below [6 ] .  

Main FeGetures 
J 

J 
J 
J 

J 

J 

J 

J 
J 

Three IEEE Std 1355-1995 links (DS-LinkTM): 
full duplex, up to 200 Mbit/s (in each direction) 
point-to-point links 
High-level packet oriented data transfer 
Autonomous command execution 
Fault tolerance features (link disconnect detection , 
parity check at token level, checksum generation) 
Emphasis put on high-throughput with low CPU 
interaction; scalable interface allows integration 
with any CPU type (data bus width of 8 ,  16 or 32 
bits) 
link disconnect detection and parity check at token 
level 

Scalable interface to host CPU (HOCI): 

Data transfer via FIFO (internal) 
Interrupt capability for host CPU 

Communication Memory Interface (COMI): 

J 
J 
J 
J 

J 

J 

J 
J 
J 

J 

J 

Data transfer via DPRAM (external) 
64 Kwords of DPRAM addressable 
Optional sign extension 
Up to two SMCS on one DPRAM (internal 
arbitration) 

Two operation modes (per channel): 

Transparent mode: 
No interpretation of data on link, variable packet 
length 

SMCS protocol mode: 
Variable packet length, command execution, reset 
capability 

Other features: 

Configuration via host CPU or over link 
Dual endian support 
Power save mode (automatic transfer rate reduction 
for null tokens) 
JTAG test capability (internal link loop back for 
test purposes) 
Checksum generation / check at packet level 

Fig 3 Scalable Multi Channel Subsystem (SMCS) 332 Block Diagram 



The Astrium MCM contains the SMCS332. The SMCS 
contains the link layer necessary to implement the multiple 
links. Its associated manual described the registers used for 
configuring its various functions. By writing and reading to 
these registers via the DSP drivers could be written and 
called by C routines as required. 

A block diagram of the SMCS is shown in Figure 3. The 
three channels are shown with channel one blown up to 
illustrate more detail. 

5. SPACEWIRE vs ALTERNATIVES 

Although selection of the MCMDSP forces us to use 
SpaceWire as the communication link, it turns out 
Spacewire has many advantages over other communication 
options. Some of the previously used subsystem 
communication technologies implemented at the Jet 
Propulsion Laboratory are MIL-STD- 1553, RS-422/485, 
Backplane Bus (VME), FireWire 1394. Each of these has its 
own unique advantages over the other. 

The testbed requirements require multiprocessor 
communication among several processors sending timing, 
status, commands, housekeeping and science information 
back and forth. This must happen in real-time. Therefore the 
link must be fast, reliable and maintainable. The initial rate 
that the link must communicate at was determined to be 
1.25Mbh with the option to go faster. This made the RS- 
422 questionable and eliminated MIL STD-1553 
technology. 

IEEE 1394 Fire Wire 
IEEE 1394 (Firewire) is a commercial technology being 
explored as a potential high-speed serial link for flight 
projects. With speeds up to 400Mb/s utilizing differential 
LVDS it has strong potential to be useful as a multi 
processor communication link. The space flight legacy on it 
though is nonexistent. Furthermore preliminary test have 
shown it to be difficult to implement due to its sophisticated 
exchange layer. Spacewire has a much simpler exchange 
layer resulting in lower gate count and higher reliability [9] 
not to mention a space qualified link layer already exists via 
the SMCS. As well as meeting the Scatterometer testbed 
requirements Spacewire can be a possible candidate for 
competing communication technologies in future missions. 

A backplane bus might be feasible for multiple processor 
communication. VME speeds of 64MBytesh and. the newer 
VME320 backplane capable of 528MbytesIs at 66Mhz 21 
slots or IGbyteIs at 133 Mhz. with 10 slots 171 make VME a 
possible contender at a technical level. But in addition to 
various other limitations such as mass, power and load 
limitations a backplane involves greater development 

overhead than a comparable serial communication plan 
severely reducing its appeal. 

The alternatives mentioned above also suffer from the 
commercial to flight transition problem. Often when a 
commercial technology is adopted to be used on flight 
projects it needs to be modified to overcome one 
shortcoming or another. By doing this adherence to the 
specification is broken leading to unforeseen problems, such 
as commercial development tools not working as intended. 

A major advantage of SpaceWire is the mass and volume 
saving for a given bandwidth. High. mass and volume as 
well as power usage end up always being a concern on 
Spacecraft. Spacewire is fair ahead over competing 
technologies for given performance. Implementing a fault 
tolerance will become easier with the simpler exchange 
level. Finally Spacewire via the SMCS has a flight- 
qualified device not yet available from competing high- 
speed serial links. 

6. SCATTEROMETER AND THE TESTBED 
The Spacewire links are part of the MCM hybrid, which is 
used, in the larger context of a scatterometer prototype 
being developed to replace the existing Seawinds project 
[81. 

The prototype is exploring a new technology in that it will 
have several Digital Signal Processors configured in a 
multiprocessor mode used to process the return echoes from 
ocean waves. There will be 3 or 4 receive processors 
depending on the final processing load, and one transmit 
processor. Each receive processor will be required to 
establish two-way communication with the transmitter. A 
timing reference is transmitted to each receiver which in 
turn utilizes this timing data to retrieve information about 
the returned echo pulse. After processing the echo data the 
receiver sends its results back to the transmitter via 
Spacewire for eventual downlink. The Spacewire link will 
be used by the transmitter for sending timing data to the 
receiver in order to help establish pulse-to- pulse 
correlation, the transmitter will then receive science data 
back from the receivers via Spacewire. The transmitter then 
forwards the data back to a Command and Data Handling 
System for downlink using RS 422[2]. 

The transmit and receive processor perform different tasks 
at a high level, the driver is written to support either. The 
higher-level software then accesses this driver. An interrupt 
is generated any time there is a transmission, reception or an 
error. The Interrupt Handler Routine then reads a register to 
determine if the interrupt was caused by a transmission, 
reception or error. Based on this information the driver 
software performs the tasks listed in the driver software 
section below. 



Fig.4 Front Panel with Micro D-type connectors 

Fig 4 shows the Front Panel of one of the processors. Shown 
are the three available links, each of which contains an RX 
and TX for full duplex data transfer. The monitor outputs 
allow a test program to observe the traffic on a particular 
link. Connections between processors located in different 
chassis are made with Spacewire specified cabling. 
Interconnects are made with the specified Micro-D type 
connectors although the MCM Spacewire port uses TTL 
and a standard D-Type connector. 

The testbed’s first attempts utilized a new Physical layer 
TTL to LVDS conversion board utilizing high-speed 
differential interface and 9 pin micro D-type connections. 
The initial single ended implementation led to heavy ground 
bounce. While a solution was attempted via implementing 
twisted pair cable, a temporary substitute was created. A 
unshielded CAT5 type cable with standard D-type 
connectors was used to communicate between the MCM’ s 
directly placed 5-10 feet apart using just the TTL ports. This 
worked fine for low speeds. On the conversion board the 
differential drivers and receivers used were 90C31 and 
90C32. These devices have a maximum bandwidth of 155 
Mbps, The interface to and from these devices to the SMCS 
ASIC used unbalance twisted pair with one of the signal 
lines in each pair connecting the signal ground on the 
conversion board to the signal ground on the DSP 
breadboard. A source termination of 200 ohms was used on 
the driver signals going into the DSP. Prior to doing this 
“ground bounce” and various fast rise time noise related 
problem prevented us from using the physical layer 
conversion board. 

Standard 9 pin micro-D connectors were used to provide 
front panel access to the LVDS signals. Cabling required to 

meet the basic specification was more specialized than that 
used on past projects and had to be special ordered. 
Video/Audio2 cable with 1 10 ohm characteristic impedance 
with both an internal shield for each twisted pair and a 
group shield as defined by the Spacewire spec. was used. 
Figure 5 shows a completed testbed cable 

Fig. 5 Testbed Spacewire Cable 

At the same time we decided to employ LVDS as the 
physical layer we continued fine-tuning the driver software. 
This also was considered a strong contender for contributing 
to our problems with initial link establishment early on. 

The signal characteristics at different baud rates of the new 
configuration are shown in Figure 6 a. thru f. These 
measurements were made on the MCM TTL end of the link. 
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Figure 5(a.) is at 10Mb/s, (b.)20Mb/s and so in 10Mb/s with 
(f.) showing the 6OMbls signal. The results indicate that 
further work is required on our physical layer to be able to 
meet the 155Mb/s speed capabilities of the SMCS, this will 
most likely involve high speed digital design techniques. A 

future plan is to repackage the DSP breadboards with the 
physical layer incorporated in the breadboard itself. 

a. 10 Mb/s D. LU lVIL)/S 

e. - _  
FIGURE 6( a,-f. ) Data and Strobe Signal shape as Baud Rate increases 



Space Wire Driver 
There was a need for a driver that could be called by an 
application or executive program when Spacewire activities 
were required. The Spacewire driver routine on the receiver 
and transmitter are the same. Each is written mostly in C 
with time critical portions written in assembly language. It 
is interrupt driven for critical tasks and state driven for the 
rest. Runtime statistics are collected and can be 
enableddisabled at compile time. It is an Application 
Programming Interface (MI) that allows the various modes 
of the SMCS to be exercised. This includes 

1 Initializing the master 
1 

1 Set baud rate 
1 Stopping a link 

Starting a link as master or slave 

And several more functions not listed here. 
The Driver API is implemented utilizing the following: 

1 Controlling and interfacing with the SMCS332 are 
through a set of 89 registers that are memory 
mapped to the data memory interfaced to 21020 
DSP. Not all registers are used in this driver 

1 32-bit Host Control Interface (HOCI), 
Communication Memory Interface (COMI) and 
transparent mode are chosen for this 
implementation 
Start up sequence are controlled by higher level 
application and the proper sequences as specified 
in EEE-1355 are to be followed 

Sending data 
When a link is started and established, a flag is set to true 
for that link. A message is sent that the corresponding link is 
ready to transmit. The driver clears the flag, moves the data 
to dual-port ram on the SMCS and starts the transmitter, 
EOP is attached at the end of message. After the 
transmission is completed, an end-of-transmit interrupt is 
generated. The interrupt service routine (ISR) then resets the 
flag. 

Receiving data 
When data is received on any link, the SMCS332 puts it into 
dual-port ram using the preprogrammed COMI interface. 
Since every packet is terminated by EOP, an interrupt is 

generated when the EOP is received. Since the ISR is 
required to stay as short as possible as to not interrupt the 
critical timing of the echo processing, moving received data 
from dual-port ram to the driver’s ring buffer will be done 
outside of the ISR. When an EOP interrupt is received, the 
ISR sets a flag to indicate that there is data ready to be 
moved, when the higher level application is done with its 
critical computations, it calls a function periodically and 
tells the driver to move data from dual-port ram to a ring 
buffer. The size of this ring buffer can be as large as 
memory allows, the default size is 8192 bytes. The ring 
buffer data is read first-in-first-out. When the ring buffer is 
full or near full and a new incoming message doesn’t fit, the 
new message is dropped so that it won’t corrupt previously 
received valid data in the buffer. The application can check 
the total number of 32-bit words currently sitting in the ring 
buffer by calling a function which checks to see if data is 
available. The function returns an integer indicating the 
number of unprocessed data words received. The higher 
level application calls another function to unload data from 
ring buffer to application. Another function returns the 
number of words successfully unloaded. 

Driver Error handling 
All links were programmed to auto-restart when initialized. 
A parity/disconnect error generates an interrupt. A 
disconnect/parity can happen during the transmission or 
receipt of a messagdpacket. By default, the transmit section 
is reset by the SMCS after a disconnect error has occurred, 
the receive section is not. The ISR therefore rearmshestarts 
the receiver and new transmidreceive transfers can be 
started. 

Transfer results 
Figure 7 is a graph showing the end results of our software 
and hardware, it shows the measured disconnect errors 
reported by the SMCS as the baud rate is increased. The 
greatest contribution to these errors is most likely a result of 
our physical layer conversion board. As can be seen from 
the signal characteristics in Figure5 a,-f. there is significant 
degradation of signal quality with baud rate increase. The 
link could not be reliably be maintained above 60Mb/s. 
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Fig. 7 Disconnect errors vs. baud rate for testbed MCM implementation 

7. TESTING SPACEWIRE 
Although the initial main test of our SpaceWire link was 
simply, to determine if it works or not, we have shown that 
we can keep errors down while transmitting our data. A 
more thorough test will have to be developed to evaluate its 
performance under margin, stress, failure, and anomalies. 
Especially when this evolves to a flight project. 
A LABVIEW application has been written that utilizes a 

commercial PCI SpaceWire card from 4-Links and included 
associated driver software to support interfacing to the 
SMCS. By using local loop back tests using two ports on the 
card initial task were to establish communication between 
the ports. This verified our cabling construction as well 
exercising our knowledge of the signaling protocol. This 
setup was then used to interface to the SMCS and confirm 
two-way communication between different systems. A 
driver software configuration anomaly was found this way. 
Future use will include using the LABVIEW program as a 
monitor. Part of the SpaceWire driver software function will 
record values such as 

1 Number of Packets received 
1 Number of Packets sent. 
m Number of Parity errors 
1 Number of dropped links 

Total words transmitted 

This data will be used to characterize the quality of the 
SpaceWire link as well as help troubleshoot science data 
inconsistencies. 

8. CONCLUSION 

By adopting an MCMDSP with Spacewire technology we 
are introduced into a new method of transferring serial data 
from one subsystem to another. SpaceWire has been proven 
to work reliably, is easy to implement, has a flight legacy 
and proven to be a more cost-effective high performance 
solution than competitive technology such as FireWire 
1394, RS-422/485 Mil 1553 or a bus. The existence of rad- 
tolerant hardware enormously increases its appeal. There is 
strong potential for SpaceWire on future flight missions. 
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